Expansion of CAG Repeats in Escherichia coli Is Controlled by Single-Strand DNA Exonucleases of Both Polarities

نویسندگان

  • Adam Jackson
  • Ewa A. Okely
  • David R. F. Leach
چکیده

The expansion of CAG·CTG repeat tracts is responsible for several neurodegenerative diseases, including Huntington disease and myotonic dystrophy. Understanding the molecular mechanism of CAG·CTG repeat tract expansion is therefore important if we are to develop medical interventions limiting expansion rates. Escherichia coli provides a simple and tractable model system to understand the fundamental properties of these DNA sequences, with the potential to suggest pathways that might be conserved in humans or to highlight differences in behavior that could signal the existence of human-specific factors affecting repeat array processing. We have addressed the genetics of CAG·CTG repeat expansion in E. coli and shown that these repeat arrays expand via an orientation-independent mechanism that contrasts with the orientation dependence of CAG·CTG repeat tract contraction. The helicase Rep contributes to the orientation dependence of repeat tract contraction and limits repeat tract expansion in both orientations. However, RuvAB-dependent fork reversal, which occurs in a rep mutant, is not responsible for the observed increase in expansions. The frequency of repeat tract expansion is controlled by both the 5'-3' exonuclease RecJ and the 3'-5' exonuclease ExoI, observations that suggest the importance of both 3'and 5' single-strand ends in the pathway of CAG·CTG repeat tract expansion. We discuss the relevance of our results to two competing models of repeat tract expansion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-42: Expansion of CAG Repeats in theSpinocerebellar Ataxia Type 1 (SCA1) Gene inIdiopathic Oligozoospermia Patients

Background: The lengths of CAG repeats in two spinocerebellar ataxia genes, SCA1 and SCA3, were analyzed to determine whether such repeats exist in higher numbers in infertile males. Materials and Methods: Blood samples were collected from healthy controls, oligozoospermia patients, and azoospermia patients. DNA fragments containing target CAG repeats were amplified by PCR with template DNA pur...

متن کامل

Stabilization of perfect and imperfect tandem repeats by single-strand DNA exonucleases.

Rearrangements between tandemly repeated DNA sequences are a common source of genetic instability. Such rearrangements underlie several human genetic diseases. In many organisms, the mismatch-repair (MMR) system functions to stabilize repeats when the repeat unit is short or when sequence imperfections are present between the repeats. We show here that the action of single-stranded DNA (ssDNA) ...

متن کامل

Double-strand breaks in the myotonic dystrophy type 1 and the fragile X syndrome triplet repeat sequences induce different types of mutations in DNA flanking sequences in Escherichia coli

The putative role of double-strand breaks (DSBs) created in vitro by restriction enzyme cleavage in or near CGG*CCG or CTG*CAG repeat tracts on their genetic instabilities, both within the repeats and in their flanking sequences, was investigated in an Escherichia coli plasmid system. DSBs at TRS junctions with the vector generated a large number of mutagenic events in flanking sequences wherea...

متن کامل

Single-strand DNA-specific exonucleases in Escherichia coli. Roles in repair and mutation avoidance.

Mutations in the genes encoding single-strand DNA-specific exonucleases (ssExos) of Escherichia coli were examined for effects on mutation avoidance, UV repair, and conjugational recombination. Our results indicate complex and partially redundant roles for ssExos in these processes. Although biochemical experiments have implicated RecJ exonuclease, Exonuclease I (ExoI), and Exonuclease VII (Exo...

متن کامل

Insights into mutagenesis using Escherichia coli chromosomal lacZ strains that enable detection of a wide spectrum of mutational events.

Strand misalignments at DNA repeats during replication are implicated in mutational hotspots. To study these events, we have generated strains carrying mutations in the Escherichia coli chromosomal lacZ gene that revert via deletion of a short duplicated sequence or by template switching within imperfect inverted repeat (quasipalindrome, QP) sequences. Using these strains, we demonstrate that m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 198  شماره 

صفحات  -

تاریخ انتشار 2014